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ABSTRACT

This paper presents an analytical study of the longitudinal dynam-
ics of a thrusting, lifting, orbital vehicle in a nearly circular orbit,
The translational motion is composed of a non-linear oscillation, or
phugoid, and a spiral mode which resulis in either decay or dilatation of
the orbit depending on the perturbed initial conditions. The non-linear
effects on the phugoid period and damping are small in the altitude range
considered, Elements of the orbit such as radial distance, velocity, -
and flight path angle were obtained explicitly as functions of time, The
behavior of the variations of these elements is correcily predicted.
Explicit expressions for period and damping of the angle-of-attack mode
were derived, It is shown that a critical altitude may exist at which the
phugoid mode and the angle-of-attack mode have nearly equal periods.
Near this resonance altitude linearized solutions are no longer valid
and a study of the non-linear equations shows that there is a strong in-
teraction between the translational and the rotational modes resuliing in

a switching of the two frequencies of oscillations.
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WON-LINEAR LONGITUDINAL DYNAMICS
OF AN ORBITAL LIFTING VEHICLE

INTRODUCTION

In Ref. 1, Etkin has presented a very enlightening study of the small-pertur-
bation dynamics of a satellite vehicle in a nearly circular orbit. He linear-
ized the equations of motion and solved the resulting fifth-order system
numerically. It was found that the linear solutions contain two oscillating
components which can be identified with the classical phugoid and short-period
modes and a new spiral mode. Etkin then showed by direct numerical calcu-
lations that, with hypersonic speeds at a flight altitude where the gravity
torque predominates over the aerodynamic torque, the so-called short-period
oscillations can develop a period that is longer than that of the corresponding
phugoid. At the critical resonance altitude where the two periods are nearly
equal, Etkin's linearlized solutions are no longer valid because the ampli-

tudes of the oscillations are large.

More recently, E. V. Laitone and Y. S. Chou made a theoretical analysis of
the same problem.? Their analytical solution of the linear equations are in

excellent agreement with Etkin's numerical calculations.

In this paper, we extend Laitone and Chou's investigation to include non-
linear effects in the longitudinal dynamics of the orbiting vehicle. The equa-
tions of motion of a thrusting, lifting vehicle in a nearly-circular orbit are
integrated directly in matrix form, using a perturbation technique. 1t will be
shown that, for the phugoid, or trajectory mode, Etkin's new spiral mode is
the familiar secular perturbation of a vehicle flying in a resisting medium.
The proper phugoid motion, with damping, is described by oscillatory terms
with diminishing amplitudes. Through explicit formulas, the asymptotic be-
haviors of the variations of the elements of the orbit are correctly predicted.
Furthermore, a very simple formula yields a value for the altitude where
variations in velocity change sign. This value for the velocity inversion alti-
tude is accurate to within 10 feet of the numerically computed value. For the
short-period mode, which we shall refer to as the angle-of-attack mode, ex-
plicit formulas are derived which yield accurate values of the period and

damping at all altitudes. The resonance altitude where the two oscillatory



modes have equal periods is obtained by solving a very simple equation.
. This value for critical altitude is also accurate to within 10 feet of the exact

numerical solution.

THE EQUATIONS OF MOTION

\\ ¥ \)

P N \
AN FLIGHT PATH
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Fig. 1 Axes System and Nomenclature
If we use an axes system that is always tangent to the flight path as shown in

Fig. 1, the motion of a lifting vehicle with constant thrust is governed by the

system of equations™

dv _ T pSCLV? .
"—‘EZECOSQ- —_21'_17* - g siny
2
Vd—Y=Isin +p—§CLV - —Y—Z cos
dt m @ 2m r Y
2 (D
dg _ PPV sgaco Lo
t 2B 2r B
e . +Xcos
dt 4 r Y
dr _ .
ol V sinvy
6 = Yy ta

*All symbols are defined in notation section,
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The first two equations are, respectively, the drag and lift equations along

the tangent and normal to the flight path. The constant thrust, T, is set for

a reference circular orbit of radius ro with constant lift and drag coefficients.

Furthermore, the thrust is small enough that the mass of the vehicle can be

assumed constant. Hence, along the reference orbit, wherey =« =0
T = $peSC, ug
2 Po Do ®

2
2 poSC Louo

0o -
- = 2
goTo 2mgo (2
C =0
my
- - %
9o o

The first term on the right-hand-side of the pitching moment equation, Eq.
(1-3), expresses the restoring aerodynamic torque, while the second term
corresponds to the gravity torque. The last three of Egs. (1) are kinematic
relationships. The mass density, p, of the atmosphere is solely altitude
dependent. For computational purposes the atmospheric data used were ob-
tained from a polynomial representation of the 1962 U.S. standard atmos-
phere as presented in the 19€6 U.S. standard atmosphere supplements. The
lift and drag coefficients, CL(a) and CD(a), are functions of the angle-of-
attack only, while the pitching moment coefficient Cm(a, q) depends on both

the angle-of-attack and the angular velocity in pitch relative to the earth.
To write the equations in non-dimensional forms, let

21.10 A

V(D) = wol(t), r(th = rof(t), o(t) = F24(n

2 2
p(r) = Po/F\>(I‘)» glr) = go<%> = go <%>

Furthermore, to the first order

(3)

CD(Q’) =C +C_ «a

CL(a) =C +C_ (4)
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where C_ , C. and C are the drag, lift and pitching moment coefficients
Do" Lo mg

along the reference flight path.

With the definitions

y m’ g%
2
- PoSug - (A-C) - 2ro
M 2mgg ’ B il L (3)
2
g2 = 0. 5 L >
goTo 2k

the non-dimensional equations of motion can be written as

A _AA, 1
u HCDOCOSQ' Lpu CD(a) . sinvy

r
2 A2
A . AA2 1 s u
uy = HCDOSLna+Hpu CL(a) - <7\—2 - 5 >cos Y
i (6)
; A 3ke .
a = ZHGSGZC (o, q) - 0 gin 20
m A3
2nr
: A a
6 = sznq +sa—cosy
£
/.\ _ 2 .
r = sUsiny
6 =v+a

We see now that, for prescribed initial conditions, integrating the system
of Egs. (6é) is a formidable task. The task is eased, however, by decoupling
the equations. To this end, we shall agssume that the motion of the vehicle
around its center of mass has negligible effect on the orbit, that is, on the
trajectory mode. This assumption is justified since the vehicle is small in
comparison with the dimension of the orbit and since the aerodynamic forces
in the altitude range considered are also small. This statement of the so-

called limited problem has been used in celestial mechanics to study the
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libration of the moon.

Based on this decoupling, we shall first calculate the

trajectory mode, and then use the results to integrate the equations govern-

ing the angle-of-attack oscillations.

in the last part of the paper.

PHUGOID OSCILLATIONS

The coupling effects will be examined

The phugoid, or long period oscillations, occur at nearly constant angle-of-

attack. Hence, by taking o ~20, we have the

which govern the phugoid mode.

A AA 1
u-= IJ,CDO(]. - puz) - /—\—2

r
AL 2. AA2 1
uy = (1 - s)pu” - ~ -

e
;\_ 2N .
r = s“usiny

non-dimensional equations

sin vy

A
st u2> cos (7)
A Y
r

We note that s is the ratio of the circular velocity to the orbital circular velo-

city without drag. At very high altitude s -1 and p - 0 and the first and the

third of Egs. (7) reduce to

é" 1sin
Ay Y
r

A A

r = u siny

From these, we have the energy integral

A 1
u

—12 2 - — = constant

>

In general, the force field is not conservative since the energy is dissipated

by atmospheric drag.

If we allow only small departures from the equilibrium flight path, we can

express the orbital parameters in terms of small perturbations -



By =1+G,(6)
w8 =1+ 8% | (8)
v(8) = vi(9)

Also, by expanding the mass density S(’r\-) in a Taylor's series in ?‘1, we have

BB =1+o,7 + 0,2 +... (9)
where ,
- dp) ro - (d%lro

=58 ) 2o, =3 )2, (10

! <d1‘ o po’ 2 E\dr Po )

Further, let

w? = (1 - 8%)(-0,8% +2) +s*

B =-31s?[(1-8%) (o, -1)-2] (11)
rraf, S 0) = ()

To the second order of smallness in the perturbations, we can rewrite the

system of Egs. (7) in matrix form

Xi(7) = AX(7) + B(X) (12)
where
" -Z}LCDO -1 —uCDocrl
Uy
1 2 -w?
X() =lvi |, A== 2 0 -—S‘;— (13)
2,
0 s? 0
A A A A -
F‘HCDO(G{Z + 20,0, Ty +o,1) + 2y, T
2 1 A
Bx) = = -0 301 - s21] - L8 - S -2 astm b

ZA
| S Wi ]
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Let € be an initial perturbation of any one of the variables, say r;. We can
then assume series solutions of the form

A A A
u, = €Uy, +€*u, +---

Y1 S€yy t€y, +--- (14)

A A A
r, =€r,, +€r;, +--.

or

X =€X, +€X, +--- (15)
7

where the definitions of the column vectors X,;, X,, ... are clear from Eq.
(14). By substituting into Eq. (12) and equating coefficients of like powers

in € we have the system of differential equations

X! = AX, (16)
X, = AX, + B(X,) (17)

Since A is a constant matrix we can immediately integrate Eq. (16) to have

X, (1) = eATxf (18)

where

X1 = X, (0) = = X(0) (19)

mjr-u

With this value of X, (7) we can express B(X,) as a function of + and consider
Eq. (17) as a linear system of differential equations with a forcing term.

By integrating we have
T

Xp(7) = eATxg + S‘eA(T—t)B(t) dt (20)
0
But
X3 = X,(0) = 0
Hence
.
Xa(7) = S‘eA(T—t)B(t) dt (21)

0

and the solution to the second order, of the phugoid mode, is
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x(n) =ec®Tx? v & [ AT Imma (22)
0

Linear Solution

The integration of Eq. (16) gives the linear solution. The system has the

characteristic equation

2uC 2uC 2
A3 +——%x"-+>\-———D—°<§>=o (23)
(V] [V w
where
£2 = s?[-(1+o;)s? +2] = -0 -oys? +2 (24)

In general, the characteristic equation has a pair of complex conjugate roots
corresponding to the phugoid oscillations and a real root corresponding to
the spiral mode. The last term of the characteristic equation induces the

spiral mode and is a small quantity. Let

2pC 2
N - Do (g > a (25)
spiral w ‘W

where a is a quantity to be determined. By substituting into Eq. (23) we

a=1-<i§_[.’£>z (%5a2<1+<%>2a> (26)

Using Lagrange's expansion® we have for the value of a

eon (BT (T ET) I ES C(ENE(E))
() S reE e

Then by factorizing the cubic equations, Eq. (23), we have for the phugoid

2uC .2 i
x2+—w—D—°<1+<%>a>x+al =0 (28)

wC £ 2
- . __Do £
Real ()\phugoid) w (1 +<w> a>

have

mode

This gives




O oid) [1 -(E;&’j(l +<§—73>(1—3(%>2a>]% (29)

With the roots calculated we have for the spiral mode in real time

tdouble " Pogcégm (§ [+<i;i]29>2<%>za<1+<§_>za>] (30)

For the phugoid mode the damping is given by
1.38m

1
t = X (31)
half pg SCDou° 1+ <%>‘ o

In real time, the phugoid period is

R ECRIEENEER

In the last equation, by taking the bracket equal to unity we have a result that
is identical to Laitone and Chou's Eq. (1. 5)2. At very high altitudes, w tends
to unity and p tends to zero. The phugoid period asymptotically tends to the
circular orbital period. 1In reality, after a perturbation has been applied in

a vacuum, the vehicle will go into a slightly elliptical orbit. Thus, T should
tend to this elliptic orbital period. This correct orbital period appears only

when we consider non-linear terms.

Zp.CD £ 2
In general, the quantity <TE> (;) in the expansion of a, Eq. (27), is
small and setting a =1 gives a very good approximation. This expansion
gives the roots of the characteristic equation explicitly to the desired de-

gree of accuracy. In our derivation, the damping term for the phugoid is

pole SC 2
exp [— L;m—DQ <1+<(%> a>t:] (33)

where a is explicitly given by the series expansion, Eq. (27). Usinga =1
we have Laitone and Chou's Eq. (3.9) for phugoid damping. Hence, besides
the additional spiral mode obtained, the above results greatly improve the

already accurate formulas for phugoid oscillations derived in Ref. 2.



Now let

= + i
Nohugoid - M Tier (34)

)\spiral T A2

With the roots calculated, we have, to the first order, for the elements of the

flight path

A2 .
?‘ =1+€C,e 27 +€exlT[Czcosm,~r + Cisinw, 7]
€wN\ A A .
Y = ’is\)'Z'E C,e 2T+€S%e (w,C3 N1 Cz)coswiT - (w;C; - MC3)sine; ]
A € )N
0 =1+ —5 [(w?-2) +w\i]c,e 2T (35)

2s

2

03]

+=SeMT {[[(w’- -2) +2(0 2 - oD e, +2wzw1)\1C3:l coswT
+[[(wz - 2)+w2()\f -o.)f)]C?, - szw,)qu]SinmlT}

where the C.l are constants of integration.

From these expressions we have the following interesting remarks:

1. In each of the variations of elements such as radial distance, flight path
angle, and velocity, there are two components. One component is oscilla-
tory with diminishing amplitude and it tends to circularize the flight path.
The other component is aperiodic and divergent. This component is due to
the offset effect between the thrust and the drag and induces a secular varia-
tion of the elements of the orbit.

2. For the vehicle considered in Ref. 1, w; > 1 above about 140, 000 ft, and
wy; = 1l as ro -~ «, thus the effect of drag is to shorten the phugoid period.
3. 1In the expression for /r\' since X; > 0, the divergent mode tends to de-
crease the radial distance if the initial perturbations are such that €C; < 0,
On the contrary if €C; > 0 the radial distance will increase with time.
Furthermore, under the constant thrust application, with decreasing drag,
the vehicle will move outward following a spiral.

4. From the expression for the flight path angle we can see that it varies in

the same direction as the radial distance.

10



5. On the contrary, the velocity varies as the radial distance if and only if
RS ES: (30

If the inequality is satisfied the velocity will increase as the vehicle is
spiraling out and decrease if the vehicle is spiraling in. The inverse is true
if the inequality reverses. To calculate the altitude where the velocity in-

. . 2 :
version occurs, since \; is small, we can use the equation
2 -
w” =2 (37)

The Egs. (35) are derived in terms of the non-dimensional time 1, and the

frequency of oscillations w; is given by Eq. (29). In terms of the non-dimen-

sional time, ¥, the frequency of oscillations is w;w which can be approximated

by w since w; is near unity. The square of the linear phugoid frequency, w?,

is plotted versus the altitude in Fig. 2.

We see that w? is large at low altitudes and tends asymptotically to 1 when

the altitude increases indefinitely. When w® = 2 the velocity inversion occurs.

More explicitly, using the definition in Egs. (11) for »®, we have

(W/S)S g To

s
G = - —5—(Zpo+pyro) (38)
Lo

where subscript, s, denotes the condition at sea level and p'o is the density
gradient evaluated at ro. The left-hand side of the formula above is a char-
acteristic of the vehicle and the right-hand side is solely dependent on the
characteristic of the atmosphere. Fig. 3 is a plot of Eq. (38) as a function
of the altitude and the graph can be used to determine the altitude where the
velocity inversion occurs for any given vehicle. For example, the vehicle
considered in Ref. 1 has (W/S)S/CLO = 600 1b/ft.2 Thus, the critical alti-

tude for velocity inversion is 321, 000 ft.

Eqg. (38) gives the critical altitude to within 10 ft. of the value computed

numerically from the exact linear equations.

11
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Non-Linear Solution

We have seen that the next higher order component of the vector state is
€?X,. If B(t) = B(X;), then
T
X, = SeA(T't)B(t)dt (39)
)

and, A and B are given by Eq. (13) and X,; represents the linear solution
found in the preceding section. Hence the computation of X,(71) is straight-
forward. Here we need only to have an idea of the order of magnitude of the
second order term. By the form of the vector B(X;), we can see that, if the
perturbation is small, the contribution of €2X, is negligible. This has been
shown in a numerical study by Rangi.4 But in the expansion, Eq. (9), of the
mass density of the atmosphere, ¢, is of the order 103 ., Hence, if€ >0(10_4)
we should include the second order gradient effect of the air mass density o,
which appears explicitly in B(X;). By the same consideration, terms which

need to be retained in B are

B(X,) = (40)

Hence, the non-linear numerical analysis of Ref. 4 is not valid for large per-
turbations, since the author has neglected all second and higher order terms
of the air mass density. For large perturbations, as were considered in
Ref. 4, the prime contributing non-linear factor in the phugoid and spiral
trajectory is the variation of the mass density of the atmosphere. The per-
turbed trajectories for these cases are highly eccentric orbits and it is not

correct to assume a linear variation for the air mass density. (See Appendix C)

The value of ¢, considered above is somewhat too large because of an inverse
polynomial representation of the atmospheric mass density. This resulted -

from a curve fitting analysis which can give a wrong value for a truncated

13



series at a certain altitude. In trajectory analysis a better approximation is
usually found using an exponential atmosphere. However, this atmosphere is
not suitable for a dynamics stability analysis in which a series expansion of

the air mass density is required.

In this paper, we just want to call attention to the effect of the second order
atmospheric gradient. For an accurate second order analysis, the coeffi-
cients ¢; and o, in the "parabolic representation' of ’S Eq. 9, should be

averaged for each limited altitude range considered.

Asymptotic Behavior of Phugoid Period

To the first order we have seen that the phugoid period tends to the circular
orbital period when the altitude of flight increases indefinitely. In reality,
the phugoid period tends to the perturbed elliptical period. To find this cor-
rect orbital behavior we use a new time variable, t, such that
— -1

t=7(l+h€+he +---)
where h;, h, are constants to be determined. By substituting into Eq. (39),
neglecting drag terms, and requiring a periodic solution for X,, we can
easily find that

2 2 2y, 2 2
“hy = {w” - 2) —Z(l—sszw)dfw -2) +4s°(B - 2) (41)

Hence, to the first order, an asymptotic expression for the phugoid period
is

ZTFUO

T = (1+ €hy +-..) (42)

wgo

ANGLE OF ATTACK OSCILLATIONS
The angle-of-attack mode is governed by the system

pVZSLCm(a, q)

dq _3g(r)(A-0O)

at 7B >r B °Smn2d
e s
4 _ 4+ ¥ 3
3t g - COS Y (43)
6 =y tea

1



18

The elimination of 6 and g results in a non-linear equation in o

ac L(_ a)

3:2“ Txcno\?’a %+g—rsny — t %% (AI;C) cos 2y sin 2e

+ 2_5 (ﬁigg sin 2y cos 2« +—Tn;§r%—(cL(a) cosa + CD(a) sin a)

+—r% \;5:(2 siny sina + cosy cos a) _<%>2§%%£ (44)
- _PS.___:];L C_(aq)+ -Z-% sin2y + S—CZ—ILI‘; %{’— -%.Zz sin2y = 0 i

Linear Solution

A zero-order solution can be obtained easily by considering small oscilla-

tions of the angle-of-attack along a circular orbit. Assume

a<<1,y=0,%Y{=0,V=uo,r=ro (4‘5)

Then Eq. (44) reduces to the linear equation with the non-dimensional time,

T, as the independent variable

2

o'+ ﬁ(cDo +Cp -26C, o'+ f—;z—(3ko- 2yn6C_ Ja = 0 (46)
@ (24

q

To the order i, we have for the angle-of-attack mode

n
= - —= 4+ - 7
A i~ (47)

where

(48)

2 2
n® = g%{3ky - 2undC__ )
H my

The solution, Eq. (47), is identical to l.aitone and Chou's result? and is in

good agreement with the results of the numerical study in Ref. 1.

Explicitly, in real time, the angle-of-attack period is

15
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21Tu° [ :) 2

3ky - 2uné€C 49
205 0 Hﬂ m (49)

and the damping is given by

_ B8o -2
exp [ 2u, (CDo + CLa, 26CmA)t] (50)
q

Resonance Altitude

For practical values of vehicle parameters, there is an altitude where the
two frequencies, w and n, can be equal. This altitude, called the resonance
altitude, is found by solving the equation w = n, and for simplicity, setting

g2 =1,

Explicitly, we have

2k? (3ko - D(W/S)
v s . I_z
1.C Po Ogs
m

(51)
[24

where subscript s denotes the condition at sea level. The left-hand side of
the formula above is a characteristic of the vehicle and the right-hand side

is solely dependent on the characteristic of the atmosphere. Fig. 4 pre-
sents the variation for the earth's atmosphere as a function of the altitude

and the graph can be used to determine the resonance altitude for any given
vehicle. For example, for the vehicle considered in Ref, 1, the characteristic
value on the left-hand side of Eq. (51) is 5.2281 x 10*1b/ft* and the resonance
altitude is therefore 492, 300 ft. The value of the resonance altitude com -
puted from Eq. (5]) is correct to within 10 ft compared with the exact value

Irom a numerical analysis using Etkin's equations.

16
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Coupling Effects

We have assumed that the coupling effects between the two oscillatory modes
are negligible. This is, in general, true, below and above the resonance
altitude. However, near the resonance altitude, strong coupling effects are

evident and the linear solutions, ¥Egs. (29) and (47), are no longer valid.

In his study', Etkin found that the Phugoid period increased with altitude,
tending asymptotically to the orbital period. He also found that, for his ve-
hicle, the period of the angle-of-attack mode increased with altitude and
crossed over the Phugoid period at about 490, 000 ft, tending asymptotically
to infinity at about 505, 000 ft, This behavior is also predicted by the un-
coupled oscillatory mode frequencies, Eqgs. (29) and (47), and agrees with

one's physical intuition. However, a close inspection of the region near the
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resonance altitude, using Etkin's linear equations, shows that this descrip-
tion of the behavior of the mode periodé is in error and reveals, instead,
the phenomenon shown in Fig. 5. There is, in fact, a '""switching' of the

modes of oscillation at the resonance altitude instead of a "crossing'"!

The uncoupled damping constants in Egs. (29) and (47) show that they will
remain negative at all altitudes. However, Fig. 6 shows that near the reso-
nance altitude the Phugoid damping constant becomes positive while the
angle-of-attack mode damping constant remains negative. Above the reso-

nance altitude the "switched'" angle-of-attack mode damping constant is

positive while that of the ""'switched" Phugoid is negative.

A factorization of the fifth-order characteristic equation, of the linearized
coupled equation of motion, that takes into account the effects described-

above, has been obtained by Dobrzelecki.® He found that for the damping

constants
Real (h ooid) © [ tJL—((T)&(l + ((%)2:1) —KZ%(CN1+CNZ)] (52)
Real ()\attack) - _l: E%\]—L * Ki(CNI * CNZ):, (53)
where

2[s?(1+8?) + 3kes? - w?]

W[l - (1
w

K =

(54)

and the coupling coefficient K is positive below and negative above the reso-

nance altitude.

Egs. (52) and (53), together with the equations for w and n, correctly and
accurately predict the values of the damping constants and frequencies of

the oscillatory modes, to within a few thousand feet below and above the
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resonance altitude. Figs. 5 and 6 clearly show that near the resonance alti-
tude one has to consider the non-linear equations of motion to predict cor-

rectly the crossing of the periods.

Non-Linear Angle-of-Attack Frequency

At high altitudes, especially near the resonance altitude, the amplitude of
oscillation of the angle-of-attack may be large. The mode is governed by

the non-linear Eq. (44). A simplification may be made by observing that the
aerodynamic forces are small and, thus, we can consider the orbit as an ex-
act Keplerian ellipse for the duration of one or several revolutions. Further-
more, by considering a circular orbit and neglecting quantities of the order
p.z and the negligible damping, we have an equation with v as the independent

variable.

3szko . 2|J.Sz‘l’]6
- = =0
" sina cos o —— (55)

Q’” +

This non-linear equation is similar to the equation derived by V. V. Beletskii
(Ref. 6, p. 72) with one difference. Here we have a constant low thrust
while Beletskii explicitly assumed a drag-free orbital period for the trajec-

tory.

For a slender vehicle with a conical surface of attack, an approximate ex-

pression for the pitching moment coefficient is

c_=C sin o cos « (56)
m m
24
where Em s Cm can be evaluated by using the simple Newtonian impact

o a
theory for moderate angle-of-attack. Accurate values for Cm can be ob-
[04
tained from wind-tunnel measurements. With this assumption, the non-

linear equation for the angle-of-attack is
=2

n® .
" + = sinag cosa =0 (57)
w

where

2 = g2(3kg - zmaEm ) ~ n? (58)
24



Eq. (57) can be integrated easily using the theory of elliptic integrals or the
so-called Lindstedt method for obtaining periodic solutions to non-linear
equations (Ref. 7, p. 141). The period of oscillation for large angle-of-
attack obtained, in real time, is

1 5 11 4

ZTTUO « ..
7 %o +1920'o + ) (59)

gosS

T =

(3kp - zmﬁﬁm M1 +
o

where a4 is the initial perturbed angle of attack. We notice that resonance

does not appear for circular orbits.

Eccentricity Oscillations

If the orbit is elliptical, the result is qualitatively different since the co-
efficients of the non-linear equation are periodic quantities. The most sig-
nificant effect is the forced oscillations due to the non-vanishing eccentricity
of the orbit. This effect will give rise to a possible resonance. Let us con-
sider a slightly perturbed Keplerian ellipse about the reference circular

orbit, then

. ro(l - €*)
l+€cosT (60)
where € is small. To the order € we have
r =ro(l-€cosT), V% = goTp (1+2€ cos 7)
1
V ={goro)é{l+€cosT), g = gol{l+2€ cos ) (61)

siny = §€ sint, cosy = =(l-2€cos )

= Bo® 4

p = po(l-€c;y cosT), T
Uo

Neglecting both damping and quantities of order pz, and takingw = s =1, we
have

o" + [(3kg - zma‘c'm ) -€(3kg - 2(0y - 2) pnac':m )cos t]sina cos a
[24 [+

+ 3€kysinT cos 2o + [..!.CD cosa
0

= |J.CD0(1-€G'1 cos T) - €sinT - |J.CL°0'1€ sin T (62)
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To display the effect of eccentricity oscillations, let us consider the case of

small angle-of-attack. This gives us a Mathieu equation with forcing ferms

o" +(a? - €b cos Na = -€(c sinT + d cos 7) (63)

where
a? = 3k, - zmsé'm

o
b = 3ky - 2(¢; - 2) maEm
@ (64)
c = 3ko + 1 + ]J.CLOO']
d = |J.CD00'1

The homogeneous Mathieu equations have a periodic solution which can be ob-
tained with classical methods. Here we seek a particular solution for the
non-homogeneous Eq. (63) with each of the two forcing functions. For ex-

ample, consider

o' +(a? -€b cosTa = -€c sin T (65)
and assume a particular solution of the form
a, = - €c sin T¢(T) (66)

By substituting into Eq. (65) we have an equation for ¢
2
Sxyy 38 5 de 2 _q =
(1 - x*) Eme 3de + (a 1-€bx)p =1 (67)

where

X = CcosT {68)

A particular solution of Eq. (67) is sought as a series in terms of the small

parameter €. Let
Bx) = do +EG +E P + - - (69)

Then by substituting into Eq. (67) and equating terms of the same order of

magnitude we have

22



]
—

(1-x)do - 3xdh + (a® - 1) o
(70)

(1- x%) oy -3x4) +(a -1)¢; = bxdy

where the prime here denotes differentiation with respect to x = cos r. The

system can be readily integrated to give

¢o = 2T -1
- b cos T (71
L P T

It is clear that we can do the same with the forcing term -€d cosT, and we
have a particular solution for the non-homogeneous Eq. (63). By neglecting

€2d we have for a particular solution of Eq. (63)

] c . €%bc sin 27
@ _'Gr—_l_)[c sinT + d cos 7] - 2(a% -1){a® -4) e

e

In the last expression we can see that a® = 1 corresponds to a resonance.
Our results constitute an extension of Beletskii's study of small eccentric
oscillations of a satellite under pure gravity torque {Ref. 6, p. 41). The
general solution of Eq. (63) is then the sum of the general solution of the

Mathieu equation and the particular integral, Eq. (72).

CONCLUSION

In this paper we have presented an analytical study of the longitudinal dyna-
mics of a thrusting, lifting, orbital vehicle in a nearly circular orbit. Ex-
plicit expressions for the elements of the orbit were derived and the behaviors
of the variations of these elements were correctly predicted. It was shown
that for large perturbations the second order gradient effect of the air mass
density must be included. Explicit expressions for the period and damping

of the angle-of-attack mode were derived. It was shown that a resonance
effect was not present for a circular orbit. A resonance effect was displayed
by a study of the forced eccentricity oscillations and the critical altitude for
resonance was obtained by solving a very simple equation. The analytical ex-
pressions are in excellent agreement with an independent numerical analysis

at all altitudes.
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APPENDIX A

Characteristics of the Atmosphere

All numerical computations are based on the U.S. Standard
Atmosphere, 1962%. However, for ease of computation the approximate
inverse polynomial representation of this atmosphere that appears in the

U.S. Standard Atmosphere Supplements, 19661, is assumed to be exact.
The inverse polynomial is of the form
4
p/ps = 1/[Ag+A,Z+---+A,;, 2] (A-1)
where Z is the geometric altitude above the standard geoid (6378.17 km
radius) in kilometers. The coefficients Aj are given in Table A-1,

The polynomial approximation is valid for the altitude range 0-200
km. Compared to the Standard Atmosphere, the approximation differs by
less than 5% (see Fig. A-1) in this altitude range.

E % £
"or}/e An NN A —

NN W

g f0 80 20 L1600 200

-5

Fig. A-1 Error in Representing 62"
Standard Atmos. By Poly-
nomial Representation. i

The non-dimensional density gradients defined in Eq. (10) of the

text are plotted in Fig. A-2. For comparison the first density gradient

*U.S. Standard Atmosphere, 1962, prepared under sponsorship of ESSA,
NASA, and USAF.

tU.S. Standard Atmosphere Supplements, 1966, prepared under sponsor-
ship of NASA, USAF and U.S. Weather Bureau.

" Both publications are available from the Superintendent of Documents,
U.S. Government Printing Office, Washington, D.C. 20402.

¥lbid., p. 68.
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(o) obtained by numerical differentiation of the tabulated Standard

Atmosphere data is included in the figure.
Table A-1

COEFFICIENTS FOR DENSITY POLYNOMIAL
Altitude range 0-200 km
pg = 1.2250 Kilograms/m? Aj [<] km?

i -Aj

0 0.1000000000 E 01
1 0.3393495800 E-01
2 -0.3433553057 E-02
3 0.5497466428 E-03
4 -0.3228358326 E-04
5 0.1106617734 E-05
6 -0.2291755793  E-07
7 0.2902146443 E-09
8 -0.2230070938 E-11
9 0.1010575266 E-13
10 -0.2482089627 E-16
11 0.2548769715 E-19
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APPENDIX B
Characteristic of the Vehicle
The characteristics of the vehicle geometry and the aerodynamic
stability derivatives used in all numerical calculations are those used by
Etkin' and Rangi* and are typical for a slender body, a cone or wedge of

3° semiangle. The values were derived from the simple Newtonian im-

pact theory for moderate angles of attack. They are tabulated below.
Table B-1

GEOM ETRIC VEHICLE PARAMETERS

ky=6ft. L = 50 ft.
ko = -0.94 W/S = 30 psf. (sea level)
Table B-2

AFRODYNAMIC STABILITY DERIVATIVES

oC
m
= = 0.01 = ——— = -0.028
CLo 0.05 CDO . 33 Cm o I ) 2
a Zqu
aC oC
L D paqy
= —— =0.32 = —— =0.1 = = -0.0548
CLQ S« 9 CDa Ao > Cma S >
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APPENDIX C

Effects of Second Order Atmospheric Mass Density Gradient

In pages 13 and 14 we have discussed the need for inclusion of the
second order atmospheric mass density gradient (terms containing o,)
for an accurate analysis. This effect can be dramatically illustrated by

a numerical analysis.

Figures C-1 and C-2 respectively represent the variations of the
radial distance and the flight path angle as the time varies. They are
reproductions of computer generated plots with different atmospheric
mass density laws. The set is generated at an altitude of 300, 000 ft,
where the density gradients are the largets, with an initial non-dimen-
sional speed decrease of 10-3(6 =l = —10—3). This corresponds to a
perturbation of 25ft/sec. The equations used are the uncoupled phugoid
equations (Eqs. 7, p.5). The solid lines represent the time histories of
the elements of the orbit obtained by a numerical integration of the un-
coupled non-linear equations, Egs. 7. One curve is generated with the
exact density law, that is the 44th degree inverse polynomial representa-
tion of the 62 Standard Atmosphere. Another curve is obtained by keep-
ing only the second order gradient term. The dotted line represents the
linear analytical solutions of the uncoupled motion (Eq. 18) with the value
for a to the order . For comparison the numerical solutions using
Etkin's linearized and coupled equations are also plotted. It is clear from
the graphs that our linear analytical solutions and Etkin's linear numerical
solutions are nearly identical. But they do not compare well after 1/4 of
a revolution with the exact solution using the exact atmospheric mass
density law. The result can be improved by including higher order den-
sity gradients. This is obtained by using our second order solution
(Eq. 22). The discrepancies are much less at higher altitude where
atmospheric drag is small and at lower altitude where the period is short

and practical perturbations are small. The time scale taken for the plots
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is about 2 linear periods. Referring to Fig. C-2 the flight path angle
time history shows that the exact integration curve displays less spiral
mode and less damping than the linear solution and further shows that the
exact phugoid oscillations have smaller period. In fact the first cycle
takes 1.95 X 10% secs versus the linear phugoid period of 2.51 X 10% secs.
The second and third cycles take even less time and show that the exact

motion will complete 3 cycles for the two linear periods.

A complete numerical analysis shows that below 100, 000 ft or above
400, 000 ft linear solutions are accurate. In between there is a definite

requirement for the inclusion of higher order atmospheric mass density

gradients.

32 NASA-Langley, 1969 — 30 CR-144g



